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Introduction

The Ethereum Beacon Chain was launched in December 2021, which was 
the beginning of the journey towards Proof-of-Stake (PoS). In this new 
chain, the validators are the main actors, instead of the miners in the 
previous Proof-of-Work (PoW) chain.

After The Merge in September 2022, validators now govern the Ethereum 
Mainnet network. Anyone can activate a validator in the chain by depositing 
32 ETH and running a node, which will earn rewards for actively performing 
duties (attestation, sync committees, and block proposals) in the network.

An Ethereum node is composed of:

An Execution Client: 

It operates in the Execution Layer.

It executes block payloads (transactions, smart contracts, etc.).

A Beacon Client

It operates in the Consensus Layer.

It decides which is the canonical chain with the rest of the network.

A Validator Client

It only communicates with the beacon client. 

It signs the needed duties with the validator’s private key.

https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md
https://ethereum.org/en/developers/docs/consensus-mechanisms/pow/mining/#why-do-miners-exist
https://pandametrics.xyz/methodology/consensus-layer/attestation-rewards
https://pandametrics.xyz/methodology/consensus-layer/sync-committee-rewards
https://pandametrics.xyz/methodology/consensus-layer/proposer-rewards


Several validators can run together in a single node (for example, 500 
validators in the same node). However, a validator today is always run 
by a single operator (on one single machine). So, if that operator or 
machine goes offline, then the entire validator stops running until the 
operator is online again.

Distributed Validator Technology

Distributed validator technology, or DVT, is a critical security primitive that 
allows a single Ethereum validator to be run on a cluster of nodes working 
together as a distributed validator. DVT removes the single-point-of-failure 
for validators, creating an active-active redundancy with a failure threshold. 
That means that if one or several nodes fail to send their partial signatures, 
the distributed validator keeps performing its duties for as long as enough 
nodes (over the threshold) submit their partial duties. 

Charon is a middleware client that sits between the beacon client and the 
validator client of each node within a distributed validator cluster and 
creates consensus on what to sign. Each of these nodes signs with a partial 
signature that, when aggregated, generates the full validator signature.

When a new duty is planned for a validator, the validator client retrieves the 
duty to be signed and sends it to the Charon client. The Charon client now 
waits for enough partial signatures from the rest of the nodes. After 
receiving enough partial signatures to meet the threshold, Charon 
broadcasts the signed duty to the beacon node, which broadcasts it to the 
network.



The threshold of each cluster (minimum number of partial signatures 
to perform duties) depends on the number of nodes in the cluster:

A 4-node cluster has a threshold of 3 partial signatures (1 node 
failure tolerated).

A 7-node cluster has a threshold of 5 partial signatures (2 node 
failure tolerated)

A 10-node cluster has a threshold of 7 partial signatures (3 node 
failure tolerated)

A cluster can stay active as long as more than 66% of its nodes send 
their partial signatures.

For a more in-depth explanation of the DVT, please refer here.

https://docs.obol.tech/docs/int/key-concepts#distributed-validator
https://docs.obol.tech/docs/int/key-concepts


Background & Motivation

In every slot, the assigned validators need to perform their planned 
duties, which are then included in blocks. A new slot occurs every 12 
seconds and several things happen inside it:

A new block proposal is broadcasted to the network.

Validators vote (attest) on the validity of the new block.

Committee aggregators receive all votes and create aggregated 
attestations, which will be broadcasted and used by the block 
proposer at the next slot.

Figure 1: Slot time division



In Figure 1, we can observe that each of the above events has a limited 
time window, which is not strict, but strongly recommended. Not 
respecting these timings may result in missed blocks or attestations 
not being included in the next block. Focusing on the broadcasting of 
validator votes (attestations), if the duty is not sent within a defined 
time window, it may not be seen in time by the rest of the network and, 
therefore, not included in the next block. This would increase the 
inclusion delay of the attestation.

DVT adds a new step before validators broadcast their duties to the 
network, which is the aggregation of partial signatures. It is critical to 
ensure that this additional step does not affect the validator's 
performance by delaying the broadcast of signed duties.

While DVT clearly offers a novel, more resilient way of staking, it is 
unclear whether it can match the performance of classic (non-
distributed) validators. In particular, for setups that include clusters of 
nodes distributed around the world and from different cloud providers, 
it is necessary to demonstrate that despite their latency, DVT can still 
provide the same level of performance as classic validators. This is the 
objective of this study.



Experiment Setup

To evaluate Obol DVT, we performed a long multi-phased experiment. 
The experiment started at epoch 163000 (Mar-18-2023 00:40:00 
UTC) and finished at epoch 173000 (May-01-2023 11:20:00 UTC) in 
the Ethereum Prater network. The Ethereum Prater network is a 
testnet and, as such, it may have dangling validators which may not be 
running. This means there are more missed blocks than in the 
Ethereum Mainnet network, resulting in delayed attestation inclusion 
and more chain reorgs. These conditions are harder than Mainnet, 
which stresses even further the software.

The experiment consisted of running three different clusters (one of 
each type 4, 7, 10 nodes) with 1000 validators attached to each of 
them. Therefore, the experiment involved running 3000 distributed 
validators.

The experiment's goal was to test if running distributed validators 
results in a similar performance as running non-distributed validators. 
To give the experiment more robustness and stress test the client for 
extreme cases based on locations, providers, and different beacon-
client implementations, we tested the Charon setup with different 
geolocations and two different beacon clients, as well as two different 
cloud providers, all combined in a DVT cluster.



Client Versions

During the experiment, we tested two different versions of the Charon 
client: v0.14 and v0.15. At the same time that all nodes were upgraded 
from v0.14 to v0.15, the Ethereum clients were also upgraded, both at 
the execution layer and at the consensus layer.

Initial Setup

Charon v0.14.0 

Nethermind v1.17.1

Lighthouse v3.5.1

Teku v23.3.0

At Epoch 168511 we upgraded the versions to:

Charon v0.15.0 

Nethermind v1.17.3

Lighthouse v4.0.1 

Teku v23.3.1

https://github.com/ObolNetwork/charon/releases/tag/v0.14.0
https://github.com/NethermindEth/nethermind/releases/tag/1.17.1
https://github.com/sigp/lighthouse/releases/tag/v3.5.1
https://github.com/ConsenSys/teku/releases/tag/23.3.0
https://github.com/ObolNetwork/charon/releases/tag/v0.15.0
https://github.com/NethermindEth/nethermind/releases/tag/1.17.3
https://github.com/sigp/lighthouse/releases/tag/v4.0.1
https://github.com/ConsenSys/teku/releases/tag/23.3.1


Machine Specification

Distributed Validator Machines

We deployed 21 machines (4+7+10) distributed across the world to test 
the latency in edge cases. The 21 machines were distributed along 3 
different clusters: a 4-node cluster, a 7-node cluster, and a 10-node 
cluster. To make a more robust and less biased experiment, two 
different service providers were used to deploy the machines: OVH 
and DigitalOcean. Different providers offer different hardware, which 
was also part of the §purpose of this experiment. The specific 
hardware resources in the two providers were as follows

OVH

CPU RAM Disc IO Speed

8x Intel(R) Xeon(R) E-2274G CPU @ 
4.00GHz

32GB 900GB READ: bw=422MiB/s

WRITE: bw=141MiB/s

Table 1: OVH machine specification

Digital Ocean

CPU RAM Disc IO Speed

4x Intel(R) Xeon(R) Platinum 8358 CPU 
@2.60GHz

32GB 600GB READ: bw=234MiB/s

WRITE: bw=78.3MiB/s

Table 2: Digital Ocean machine specification

https://www.ovhcloud.com/es-es/
https://www.digitalocean.com/go/developer-brand?utm_campaign=armx_brand-tcpa_kw_en_cpc&utm_adgroup=digitalocean_exact_exact&_keyword=digital%20ocean&_device=c&_adposition=&utm_content=conversion&utm_medium=cpc&utm_source=google&gad=1&gclid=Cj0KCQjwmZejBhC_ARIsAGhCqnePSVSoZNMM9qOa0OVjUt0iffLu-vvwOjW_htVviAxdSoRkZWDICI4aAj2NEALw_wcB


Non-Distributed Validator Machine

To compare the distributed validators with non-distributed validators, 
we also ran 5 nodes in a separate machine (one node per main 
consensus client: Prysm, Lighthouse, Teku, Nimbus and Lodestar). 
These 5 nodes were running on the same machine and each of them 
hosted 600 non-distributed validators, therefore 3000 non-
distributed validators in total.

CPU RAM Disc IO Speed

32x AMD Ryzen 9 5950X 16-Core 
Processor

128GB 10.5TB READ: bw=512MiB/s

WRITE: bw=511MiB/s

Table 3: Non-distributed validator machine

Machine Setup & Deployment (Locations)

4-Node Cluster

CPU Location Services Node Name

OVH Frankfurt Lighthouse + Lighthouse + Loki happy-body

OVH Strasbourg Teku + Teku precious-food

OVH Warsaw Teku + Teku + Loki expensive-mountain

DigitalOcean London Lighthouse + Lighthouse + Loki mindful-movie

Table 4: 4-node cluster locations and services



7-Node Cluster

CPU Location Services Network

OVH Frankfurt Teku + Teku unusable-state

OVH Strasbourg Teku + Teku selfish-rule

OVH Warsaw Teku + Teku determined-party

DigitalOcean Bangalore Lighthouse + Lighthouse enthusiastic-area

DigitalOcean Frankfurt Lighthouse + Lighthouse affectionate-day

DigitalOcean London Lighthouse + Lighthouse jolly-life

DigitalOcean Singapore Lighthouse + Lighthouse cloudy-flowers

Table 5: 7-node cluster

10-Node Cluster

CPU Location Services Network

DigitalOcean Bangalore Lighthouse + Lighthouse dangerous-mobile

DigitalOcean Toronto Lighthouse + Lighthouse clear-fish

DigitalOcean Frankfurt Teku + Teku beautiful-word

DigitalOcean London Lighthouse + Lighthouse amazing-tea

DigitalOcean Singapore Lighthouse + Lighthouse plain-news

DigitalOcean New York Lighthouse + Lighthouse tough-city

OVH Beauharnois Teku + Teku fine-adult

OVH Frankfurt Teku + Teku alert-waterfall

OVH Strasbourg Teku + Teku delightful-dates

OVH Warsaw Teku + Teku powerful-road§

Table 6: 10-node cluster



Methodology Description

Services Deployment

Each machine described above hosted six services:

Execution client  Nethermind)

Beacon Node (either Lighthouse or Teku)

Charon Client

Validator Client (either Lighthouse or Teku, respectively)

Prometheus service

Node Exporter service

Loki (optional): a log aggregation system that connects to a given 
Grafana.

Please find here a more in-depth description of how these services 
were deployed.

Validator Creation

To keep up with the Charon cluster deployment guidelines, the 
validator creation was carried out through the Charon client. Please 
find the guide here.

The process consists of performing a Distributed Key Generation 
(DKG) ceremony among the peers that will form each of the clusters. 

https://grafana.com/oss/loki/
https://www.google.com/url?q=https://github.com/tdahar/charon-distributed-validator-cluster/tree/experiments/migalabs&sa=D&source=apps-viewer-frontend&ust=1691835883556076&usg=AOvVaw1Tqxor0miFOUODHfXg-KNJ&hl=en-GB
https://docs.obol.tech/docs/next/charon/dkg
https://docs.obol.tech/docs/next/charon/dkg


Before this ceremony, we configured each of the nodes’ ENRs and 
defined one of them as the host (one in each cluster), which collected 
all the ENRs into a single file. During the DKG, all peers in the cluster 
connect to each other and start generating the distributed validator 
partial keys shares.

After this process, at each machine, we had a Charon folder containing 
the cluster definition and the validator keys shares. To activate all the 
validators in an automated way we followed this guide.

Measuring & Data Collection

To analyze the performance of the nodes in the experiment, we 
collected data through two different services:

Prometheus

GotEth

Prometheus

Both the execution and consensus clients expose several metrics that 
can be scraped with Prometheus. The Charon client does the same. 
Apart from this, we also wanted to measure the machine resource 
usage, which can be achieved with the Prometheus Node Exporter 
module. This module enables anyone to measure and monitor the 
machine resource consumption regarding the network, memory, CPU, 
and disk, among many others. With these metrics, we are able to 
compare which resources are more used.

GotETH

As this experiment consists of running distributed validators and 

https://parithosh.com/2021/06/09/2021-09-06-eth2-deposits/
https://prometheus.io/
https://github.com/cortze/goteth
https://www.google.com/url?q=https://github.com/prometheus/node_exporter&sa=D&source=apps-viewer-frontend&ust=1691835883556255&usg=AOvVaw2RTOV7-eS8Fjg7qJ3rxz1c&hl=en-GB


measuring their performance, it is interesting to analyze if the achieved 
rewards are similar to a non-distributed validator (what we know as a 
common validator until now). At MigaLabs we have developed a tool 
(GotEth) capable of measuring and tracking a validator’s rewards 
results obtained during a long period of time, as explained in previous 
publications. More specifically, GotEth is an open-source tool that can 
retrieve the achieved and max reward from any validator in the 
Ethereum network at each epoch.

https://www.google.com/url?q=https://github.com/cortze/goteth&sa=D&source=apps-viewer-frontend&ust=1691835883623035&usg=AOvVaw0k0oNHKqMG4FvIwC2Mm6dz&hl=en-GB
https://arxiv.org/abs/2303.09850
https://arxiv.org/abs/2303.09850
https://github.com/cortze/goteth


Performance Analysis

In this section we analyze the data obtained during the experiment 
described in the sections above. First, we start by analyzing the 
hardware resource consumption of the nodes running Obol DVT. Then, 
we analyze the latency between nodes running in the same cluster as 
this is a critical aspect to get good reward performance. We follow the 
study by looking into attestation submissions and block proposals.

Then, we compare the total rewards obtained by DVT validators vs 
non-distributed validators. Finally we perform a scaling test in which 
we increase the number of validators up to 3000 in one single DVT 
cluster.

As the clients’ versions were upgraded during the experiment, we may 
divide part of the analysis into two subsections, identified by the 
Charon version (v0.14.0 for epochs before 168511 and v0.15.0 for 
epochs after 168511).

Hardware Resource

During the whole experiment we measured the resource consumption 
of all the nodes running DVT validators to get an idea of the workload 
of DVT technology on the machines.

 Among the collected metrics, we focused on:

CPU consumption

Memory consumption

Network sent bytes ratio



By comparing these metrics from the different machines and clusters 
we aim to identify any weak points or underperforming peers, due to 
the different clients, machines, and locations in the experiment.

CPU Consumption

Figure 2: CPU consumption in Obol-cluster4

Figure 3: CPU consumption in Obol-cluster7



Figure 4: CPU consumption in Obol-cluster10

If we observe the CPU consumption of the three different clusters, we 
can clearly spot two different groups. While some peers maintain a 
40% - 60% CPU consumption, others keep themselves at 60 - 80% 
CPU consumption. The latter are the peers that were hosted in the CPU 
consumption. The latter are the peers that were hosted in the 
DigitalOcean machines, which had less CPU capacity and, thus, had to 
use more CPU resources. Other than that, there are no major outliers or 
differences between different locations or CL clients.



Memory Consumption

Figure 5: Memory consumption in Obol-cluster4

Figure 6: Memory consumption in Obol-cluster7



Figure 7: Memory consumption in Obol-cluster10

Similar to the CPU consumption, we can observe that some peers at 
each of the different clusters consumed more memory than others. 
However, this time the difference is due to the deployed beacon client. 
While peers running with the Lighthouse client consumed most of the 
time between 20% - 40% of the memory, peers running with Teku 
consumed most of the time between 60% - 80%.



Network Bandwidth

Figure 8: Network Sent Bytes Ratio in Obol-cluster4

Figure 9: Network Sent Bytes Ratio in Obol-cluster7



Figure 10: Network Sent Bytes Ratio in Obol-cluster10

Regarding network usage, we have extracted the ratio of megabytes 
sent per second throughout the whole experiment. In the three figures 
above, we can always observe two groups of peers. While some of 
them spend around 4MB/s of bandwidth most of the time, some others 
maintain themselves at around 2MB/s. Similarly to the CPU 
consumption, we can spot that these differences are due to the cloud 
provider: peers hosted on an OVH machine were capable of reaching a 
higher network throughput than the ones hosted on a DigitalOcean 
machine.

Overall, it is important to note that the nodes that were used for this 
experiment are not powerful machines, quite the opposite, they are 
considerably limited in terms of resources, and Obol DVT runs 
smoothly in this constrained environment.



Latency Between Peers

As mentioned in the experiment description, it is important that the 
beacon node broadcasts the signed duties in the defined time window. 
Therefore, it must be ensured that the additional complexity of the 
distributed validator does not add any delays.

Figure 11: Latency between locations in v0.14.0

In Figure 11 it is shown the latency between the peers by location and 
region. We can observe that peers that are closer to each other 
location-wise share a lower latency, as expected. After upgrading to 
version v0.15.0 we can observe that the latency in the worst-case 
scenarios (very far distance between peers) has improved 
substantially.



Figure 12: Latency between locations in v0.15.0

In general, we see a similar pattern in both versions but with significant 
improvements for v0.15.0 For example, the latency between 
Strasbourg and Singapore has decreased from 470ms in v0.14.0 to 
300ms in v0.15.0, which represents a 37% improvement. Similarly, the 
latency between Beauharnois and Singapore has decreased from 448 
in v0.14.0 to 245ms in v0.15.0, which represents a 46% improvement.

Missed Attestations

At every epoch, validators are assigned to attest to the validity of one 
block. This means that they must submit one attestation per epoch. 
Taking into account Figure 1, the node must broadcast the assigned 
attestation duties (depending on the validators running on this node) 
after receiving the new block (after the second 8th), and this duty 
must have been received by the beacon committee aggregators by the 
second 8th. After that, the committee aggregators broadcast the 
aggregated attestation to the network, which would be included in the 
next block. Delaying this last broadcast could risk the inclusion of the 
aggregated attestation in the next block. 



Figure 13: Missed attestation duties in v0.14.0

If the use of DVT added any delay during this process (sending signed 
attestations), it could happen that the node broadcasts the signed 
attestations too late, compromising the inclusion of the latter in the 
aggregation. Thus, the inclusion delay would increase, and, depending 
on how much it is increased, some flags could be missed, 
compromising the expected reward. See here to understand better 
how attestation flags are computed.

Figure 13 shows the percentage of missed attestation flags out of the 
planned duties (one per validator per epoch), as well as the average 
per group: distributed vs non-distributed validators.

https://pandametrics.xyz/methodology/consensus-layer/attestation-rewards


 We can observe that in all cases the most failed flag is the head flag, 
followed by the source and finally the target. The difference in all cases 
between distributed and non-distributed validators is less than 1%, 
which demonstrates that Obol DVT has a similar performance in terms 
of attestation duties. 

In Figure 14, we can observe the same performance as with v0.14.0, 
which means no major changes were applied regarding the attestation 
duties during the upgrade.

Figure 14: Missed attestation duties in v0.15.0



Block Proposals

At every slot, one random validator is chosen to propose a new block, 
which will include attestations broadcasted in the previous slots. The 
block proposal is the first task inside a new slot. This means that if the 
block proposal is received by the rest of the network after the 
estimated (4 seconds), there is a risk the rest of the validators vote on 
a missing block. It is therefore very important to ensure that DVT does 
not add any delays to submitting the new block when they are chosen 
as the block proposer.

Figure 15: Block Proposal Duties in v0.14.0

In Figure 15, we can observe that all validators have a proposal rate over 
90%. From the Obol DVT nodes, cluster7 registers the worst proposed 
blocks ratio, with 92.6% of proposed blocks. Comparing distributed 
and non-distributed validators, we can observe that there is a 
difference of 2% in proposed blocks. The missing blocks are 
concentrated in the biggest clusters (cluster7 and cluster10), while the 
validators in cluster4 did not miss any block proposal.



Figure 16: Block Proposal Duties in v0.15.0

In Figure 16, we can observe the same data as in Figure 15 but after 
upgrading the Charon client to v0.15.0. Regarding the distributed 
validators, we now observe a big improvement in the ratio of proposed 
blocks, getting closer to the 100% and even getting better 
performance than non-distributed validators. In general, we see an 
improvement of 2.7% in proposed blocks in distributed validators 
compared to v0.14.0. All missed blocks now concentrate on the 
validators in cluster7, while cluster4 and cluster10 proposed all its 
scheduled blocks.

Maximum Extractable Reward

After analyzing the attestation and block duties of validators, we want 
to check what was the actual reward that validators got with respect to 
the maximum they could have got. In Figures 17 and 18 (v0.14.0 and 
v0.15.0 respectively) it is shown the achieved aggregated reward by 
each group of validators against the maximum aggregated 
compensation these could have obtained, as well as the average 
grouping by distributed and non-distributed validators.



Figure 17: Achieved reward from Maximum Extractable Reward in v0.14.0

Looking at the data we can observe a similar performance for both, 
distributed and non-distributed validators. We can observe that in 
both versions the average extracted reward of distributed validators is 
between 91% and 92%, not even 1% below the performance achieved 
by the non-distributed validators. As mentioned before, the 
experiment runs on the Prater network, which involves an expected 
lower performance than running on the Mainnet network due to 
dangling validators, among other reasons. Note that with Charon v0.15, 
the difference between DVT and non-DVT is only 0.4%.

Figure 18: Achieved reward from Maximum Extractable Reward in v0.15.0



Performance Timeline

As mentioned before, the obtained rewards by a validator clearly 
shows the node performance. This is why we have compared the 
obtained rewards against the maximum extractable reward at each 
epoch to detect any downtimes or underperformance in any of the 
validators.

Figure 19: Achieved Rewards Timeline

In Figure 19, we can observe that the validator usually obtains an 
average reward of 75% - 100% of the maximum extractable reward, 
concentrating around the 90%, which is expected in the Prater 
network. However, we see some drops even to negative values, which is 
due to missing attestations or sync committee duties.

Some execution clients had issues with corrupted databases so we 
had to restart some of the nodes, which caused the first drops 
between epoch 166000 and epoch 168000.



During epoch 168511 we upgraded all nodes, as explained before. Since 
all clusters have a threshold, we tried to maintain a minimum number 
of nodes running at all times, but nonetheless, during a few epochs the 
cluster underperformed. This is why we see several reward drops near 
the red dashed line (which marks the epoch when we upgraded the 
clients). Note that non-distributed validators running on a node would 
also be perturbed by software updates, and in some cases to a greater 
extent

We also see some drops around epoch 172000, in which we observed 
some beacon nodes receiving blocks later than expected. More 
specifically, during these slots, the Charon client sent the attestation to 
the beacon node by the second 5th of the slot, at which the block had 
not arrived yet. This explains why there are some small drops in 
rewards on that epoch.

Figure 20: Inclusion delay by cluster



Similar to the achieved reward, the inclusion delay is a good 
representation of the validator's performance. Taking into account 
Figure 1, the more time a validator takes to send its signed attestation, 
the higher the probability of not getting the attestation included in the 
next block. As a result, less attestation rewards would be obtained.

In Figure 20, we can observe that, most of the time (over 70%) the 
inclusion delay is 1 slot, which is the ideal scenario. However, we can 
see that there are some cases of inclusion delays between 2 and 5 as 
well (around 20% of the time), and the rest over 5 (less than 10% of 
the time). We can observe that the three clusters show the same 
behavior and percentiles. Therefore, even though some clusters have 
temporarily underperformed, in general, all of them had an overall 
similar performance.

Scaling Performance Test

Additionally, another experiment was performed on DVT. This 
experiment consisted of scaling the number of validators that are run 
on a cluster, with the main goal of analyzing how the Charon client 
handles such a high load of duties to perform. As the main analysis 
included the activation of 3000 validators in 3 different clusters 
running for a total of 10,000 epochs, for the scaling experiment we 
took the following steps:

Run a 4-node cluster with 1000 keys for 1000 epochs

Run a 4-node cluster with 2000 keys for 1000 epochs.

Run a 4-node cluster with 3000 keys for 1000 epochs.

The same machines were reused for all steps, but cleanup was needed 
when changing the number of validators. This is because it is not 



possible to add key shares to an existing cluster. Instead, it is 
necessary to run the DKG process to generate all the key shares that 
will be used in the cluster.

Figure 21: Beacon node score per peer and step

A larger number of validators per cluster means that a higher load is 
also expected, as more duties need to be performed. For every duty, 
the beacon node creates a duty to be signed by the validator client, 
who sends its signature to the beacon node. The more validators, the 
more duties, and therefore, more load is expected.

Figure 21, presents the beacon node score of the peers that form the 
4-node cluster during the three phases of the experiment (each with a 
different number of validators). The beacon node score is calculated 
based on the Charon Prometheus metrics (using the number of errors 
and the latency of the queries). We can observe that, the more 
validators in the cluster, the lower the beacon node score.

On average, the DVT cluster obtained a beacon node score of 81.5% 
with 1000 validators, 77.3% with 2000 validators (around 4% worse),



and 69.9% with 3000 validators (more than 11% worse compared to 
1000 validators).

While the beacon node score gives us some indication about the 
performance of the DVT cluster, there is no clearer benchmarking than 
measuring the amount of rewards obtained during the three phases.

As the number of validators increased with every step of the 
experiment, we analyzed the achieved rewards by the whole cluster, 
normalized by the number of validators that were performing duties 
during that period of time.

Figure 22: Achieved rewards per validator

Figure 22 shows the amount of ETH obtained by validators running 
during the previously mentioned three phases. To our surprise, we saw 
an increase in achieved per-validator normalized rewards when we 
increased the number of validators. We can see that after 1000 
epochs, the 4-node DVT cluster obtained:



0.009424 ETH per validator when composed of 1000 validators

0.009702 ETH per validator when composed of 2000 validators

0.010146 ETH per validator when composed of 3000 validators

Despite the decreasing beacon node score, the amount of rewards 
increases as the number of validators increases. This just shows that 
the internal beacon node score reported by Obol is still a work in 
progress and can be improved in the future.



Software Usability

In addition to the performance, we also analyzed the ease-of-use of 
Obol DVT in different uncommon scenarios.

Combine Keys Feature

After the experiment had finished it was our goal to combine all keys 
so they could be reused for other testing purposes. Charon contains a 
feature to combine splitted keys into a single key. We tried merging the 
3k split keys, but we were not able to do so as the feature had a bug 
that would not allow combining more than 10 keys.

After reporting this issue to the Obol team, the bug was solved and the 
algorithm was improved so that the process would take 1 minute 
(before the patch it would take 10 minutes). Finally, the changes were 
merged into the main branch.

Migration of Nodes In a Cluster

After finishing the experiment, several machines were shut down and 
some redistribution was needed. Specifically, the 4-node cluster kept 
running, but one of the nodes was replaced, this required us to migrate 
the Charon node from the old machine to the new machine. To do this, 
we did not find any guidelines or walkthroughs to do this process, so 
we migrated it based on our knowledge of how the Charon client works.

We copied the                   folder from the machine that was getting 
shut down and transferred it to the new machine. The new machine 
was running other validators, so we erased any volumes of data folders 
from the Validator Client and imported the validators again. After that, 
the new machine ran a node in the 4-node cluster.

.charon/

https://docs.obol.tech/docs/next/int/quickstart/advanced/quickstart-combine
https://github.com/ObolNetwork/charon/issues/2151
https://github.com/ObolNetwork/charon/pull/2183


As with every software, less common use cases sometimes break 
something. Overall, the issues found were fixed and we managed to 
perform all the experiments we wanted to do.



Conclusions

We have analyzed Obol DVT performance from a resource and rewards 
perspective.

From the hardware perspective, it is clear that resource 
consumption depends on the machine that hosts the node and 
the deployed beacon consensus layer client. More importantly, it 
is clear that Obol DVT does not need to run on powerful 
hardware, it works smoothly running on limited hardware 
resources

In terms of latency, we have noticed that, as expected, clusters 
perform better when the nodes in a cluster are located close to 
each other in nearby regions, regardless of the region. However, 
even large clusters with nodes dispersed all over the world 
manage to get a good performance. In particular, there was a 
great improvement (over 40%) in latency obtained by v0.15.0.

From the attestation duties perspective, we found that Obol DVT 
performs very well with a difference lower than 1% compared to 
non-distributed validators.

Regarding block proposals, our study shows that Obol DVT 
misses very few proposals, and after the upgrade to v0.15.0, the 
performance of Obol DVT is even higher than non-distributed 
validators, with a total score of 99.7% for Obol DVT, compared to 
99.3% for non-distributed validators.

From the achieved rewards perspective, the difference between 
Obol DVT and non-distributed validators is again almost 
negligible (less than 1%), which was expected after seeing the 
attestation duties and block proposal performance.



Inclusion delay was also analyzed and our study shows that over 
70% of attestations are included in the next slot, and over 90% 
of them in the first 5 slots.

During the scaling experiment we noticed that the internal 
beacon node score reported by Obol technology is not a great 
performance indicator and it still needs to be improved.

The combining keys feature was fixed during this study and it 
now can merge thousands of keys in less than a minute, improving 
the usability of Obol DVT.

Node migration is feasible with Obol DVT, but it is important to 
improve the documentation, in particular regarding less common 
usages. The objective is to facilitate the work of staking operators 
as much as possible.

The most surprising finding of this study was probably to discover 
that Obol DVT performs better as you increase the number of 
validators to several thousands. Larger scaling experiments 
should be performed in the future to stress as much as possible 
the hardware resources and measure the limit of this scaling.
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