
Obol DVT

Performance

Analysis

Table of Content

Introduction 04

Background & Motivation 07

Experiment Setup 09

Client Versions 10

Machine Specification 11

Distributed Validator Machines 11

Non-Distributed Validator Machine 12

Machine Setup & Deployment 12

4-Node Cluster 12

7-Node Cluster 13

10-Node Cluster 13

Methodology Description 14

Services Deployment 14

Validator Creation 14

Measuring & Data Collection 15

Prometheus 15

GotEth 15

Performance Analysis 17

Hardware Resource 17

CPU Consumption 18

Memory Consumpton 20

Network Bandwidth 22

Latency Between Peers 24

Missed Attestations 25

Block Proposals 28

Maximum Extractable Reward 29

Performance Timeline 31

Scaling Performance Timeline 33

Software Usability 37

Combine Keys Feature 37

Migration of Nodes in a Cluster 37

Conclusions 39

Introduction

The Ethereum Beacon Chain was launched in December 2021, which was
the beginning of the journey towards Proof-of-Stake (PoS). In this new
chain, the validators are the main actors, instead of the miners in the
previous Proof-of-Work (PoW) chain.

After The Merge in September 2022, validators now govern the Ethereum
Mainnet network. Anyone can activate a validator in the chain by depositing
32 ETH and running a node, which will earn rewards for actively performing
duties (attestation, sync committees, and block proposals) in the network.

An Ethereum node is composed of:

An Execution Client:

It operates in the Execution Layer.

It executes block payloads (transactions, smart contracts, etc.).

A Beacon Client

It operates in the Consensus Layer.

It decides which is the canonical chain with the rest of the network.

A Validator Client

It only communicates with the beacon client.

It signs the needed duties with the validator’s private key.

https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md
https://ethereum.org/en/developers/docs/consensus-mechanisms/pow/mining/#why-do-miners-exist
https://pandametrics.xyz/methodology/consensus-layer/attestation-rewards
https://pandametrics.xyz/methodology/consensus-layer/sync-committee-rewards
https://pandametrics.xyz/methodology/consensus-layer/proposer-rewards

Several validators can run together in a single node (for example, 500
validators in the same node). However, a validator today is always run
by a single operator (on one single machine). So, if that operator or
machine goes offline, then the entire validator stops running until the
operator is online again.

Distributed Validator Technology

Distributed validator technology, or DVT, is a critical security primitive that
allows a single Ethereum validator to be run on a cluster of nodes working
together as a distributed validator. DVT removes the single-point-of-failure
for validators, creating an active-active redundancy with a failure threshold.
That means that if one or several nodes fail to send their partial signatures,
the distributed validator keeps performing its duties for as long as enough
nodes (over the threshold) submit their partial duties.

Charon is a middleware client that sits between the beacon client and the
validator client of each node within a distributed validator cluster and
creates consensus on what to sign. Each of these nodes signs with a partial
signature that, when aggregated, generates the full validator signature.

When a new duty is planned for a validator, the validator client retrieves the
duty to be signed and sends it to the Charon client. The Charon client now
waits for enough partial signatures from the rest of the nodes. After
receiving enough partial signatures to meet the threshold, Charon
broadcasts the signed duty to the beacon node, which broadcasts it to the
network.

The threshold of each cluster (minimum number of partial signatures
to perform duties) depends on the number of nodes in the cluster:

A 4-node cluster has a threshold of 3 partial signatures (1 node
failure tolerated).

A 7-node cluster has a threshold of 5 partial signatures (2 node
failure tolerated)

A 10-node cluster has a threshold of 7 partial signatures (3 node
failure tolerated)

A cluster can stay active as long as more than 66% of its nodes send
their partial signatures.

For a more in-depth explanation of the DVT, please refer here.

https://docs.obol.tech/docs/int/key-concepts#distributed-validator
https://docs.obol.tech/docs/int/key-concepts

Background & Motivation

In every slot, the assigned validators need to perform their planned
duties, which are then included in blocks. A new slot occurs every 12
seconds and several things happen inside it:

A new block proposal is broadcasted to the network.

Validators vote (attest) on the validity of the new block.

Committee aggregators receive all votes and create aggregated
attestations, which will be broadcasted and used by the block
proposer at the next slot.

Figure 1: Slot time division

In Figure 1, we can observe that each of the above events has a limited
time window, which is not strict, but strongly recommended. Not
respecting these timings may result in missed blocks or attestations
not being included in the next block. Focusing on the broadcasting of
validator votes (attestations), if the duty is not sent within a defined
time window, it may not be seen in time by the rest of the network and,
therefore, not included in the next block. This would increase the
inclusion delay of the attestation.

DVT adds a new step before validators broadcast their duties to the
network, which is the aggregation of partial signatures. It is critical to
ensure that this additional step does not affect the validator's
performance by delaying the broadcast of signed duties.

While DVT clearly offers a novel, more resilient way of staking, it is
unclear whether it can match the performance of classic (non-
distributed) validators. In particular, for setups that include clusters of
nodes distributed around the world and from different cloud providers,
it is necessary to demonstrate that despite their latency, DVT can still
provide the same level of performance as classic validators. This is the
objective of this study.

Experiment Setup

To evaluate Obol DVT, we performed a long multi-phased experiment.
The experiment started at epoch 163000 (Mar-18-2023 00:40:00
UTC) and finished at epoch 173000 (May-01-2023 11:20:00 UTC) in
the Ethereum Prater network. The Ethereum Prater network is a
testnet and, as such, it may have dangling validators which may not be
running. This means there are more missed blocks than in the
Ethereum Mainnet network, resulting in delayed attestation inclusion
and more chain reorgs. These conditions are harder than Mainnet,
which stresses even further the software.

The experiment consisted of running three different clusters (one of
each type 4, 7, 10 nodes) with 1000 validators attached to each of
them. Therefore, the experiment involved running 3000 distributed
validators.

The experiment's goal was to test if running distributed validators
results in a similar performance as running non-distributed validators.
To give the experiment more robustness and stress test the client for
extreme cases based on locations, providers, and different beacon-
client implementations, we tested the Charon setup with different
geolocations and two different beacon clients, as well as two different
cloud providers, all combined in a DVT cluster.

Client Versions

During the experiment, we tested two different versions of the Charon
client: v0.14 and v0.15. At the same time that all nodes were upgraded
from v0.14 to v0.15, the Ethereum clients were also upgraded, both at
the execution layer and at the consensus layer.

Initial Setup

Charon v0.14.0

Nethermind v1.17.1

Lighthouse v3.5.1

Teku v23.3.0

At Epoch 168511 we upgraded the versions to:

Charon v0.15.0

Nethermind v1.17.3

Lighthouse v4.0.1

Teku v23.3.1

https://github.com/ObolNetwork/charon/releases/tag/v0.14.0
https://github.com/NethermindEth/nethermind/releases/tag/1.17.1
https://github.com/sigp/lighthouse/releases/tag/v3.5.1
https://github.com/ConsenSys/teku/releases/tag/23.3.0
https://github.com/ObolNetwork/charon/releases/tag/v0.15.0
https://github.com/NethermindEth/nethermind/releases/tag/1.17.3
https://github.com/sigp/lighthouse/releases/tag/v4.0.1
https://github.com/ConsenSys/teku/releases/tag/23.3.1

Machine Specification

Distributed Validator Machines

We deployed 21 machines (4+7+10) distributed across the world to test
the latency in edge cases. The 21 machines were distributed along 3
different clusters: a 4-node cluster, a 7-node cluster, and a 10-node
cluster. To make a more robust and less biased experiment, two
different service providers were used to deploy the machines: OVH
and DigitalOcean. Different providers offer different hardware, which
was also part of the §purpose of this experiment. The specific
hardware resources in the two providers were as follows

OVH

CPU RAM Disc IO Speed

8x Intel(R) Xeon(R) E-2274G CPU @
4.00GHz

32GB 900GB READ: bw=422MiB/s

WRITE: bw=141MiB/s

Table 1: OVH machine specification

Digital Ocean

CPU RAM Disc IO Speed

4x Intel(R) Xeon(R) Platinum 8358 CPU
@2.60GHz

32GB 600GB READ: bw=234MiB/s

WRITE: bw=78.3MiB/s

Table 2: Digital Ocean machine specification

https://www.ovhcloud.com/es-es/
https://www.digitalocean.com/go/developer-brand?utm_campaign=armx_brand-tcpa_kw_en_cpc&utm_adgroup=digitalocean_exact_exact&_keyword=digital%20ocean&_device=c&_adposition=&utm_content=conversion&utm_medium=cpc&utm_source=google&gad=1&gclid=Cj0KCQjwmZejBhC_ARIsAGhCqnePSVSoZNMM9qOa0OVjUt0iffLu-vvwOjW_htVviAxdSoRkZWDICI4aAj2NEALw_wcB

Non-Distributed Validator Machine

To compare the distributed validators with non-distributed validators,
we also ran 5 nodes in a separate machine (one node per main
consensus client: Prysm, Lighthouse, Teku, Nimbus and Lodestar).
These 5 nodes were running on the same machine and each of them
hosted 600 non-distributed validators, therefore 3000 non-
distributed validators in total.

CPU RAM Disc IO Speed

32x AMD Ryzen 9 5950X 16-Core
Processor

128GB 10.5TB READ: bw=512MiB/s

WRITE: bw=511MiB/s

Table 3: Non-distributed validator machine

Machine Setup & Deployment (Locations)

4-Node Cluster

CPU Location Services Node Name

OVH Frankfurt Lighthouse + Lighthouse + Loki happy-body

OVH Strasbourg Teku + Teku precious-food

OVH Warsaw Teku + Teku + Loki expensive-mountain

DigitalOcean London Lighthouse + Lighthouse + Loki mindful-movie

Table 4: 4-node cluster locations and services

7-Node Cluster

CPU Location Services Network

OVH Frankfurt Teku + Teku unusable-state

OVH Strasbourg Teku + Teku selfish-rule

OVH Warsaw Teku + Teku determined-party

DigitalOcean Bangalore Lighthouse + Lighthouse enthusiastic-area

DigitalOcean Frankfurt Lighthouse + Lighthouse affectionate-day

DigitalOcean London Lighthouse + Lighthouse jolly-life

DigitalOcean Singapore Lighthouse + Lighthouse cloudy-flowers

Table 5: 7-node cluster

10-Node Cluster

CPU Location Services Network

DigitalOcean Bangalore Lighthouse + Lighthouse dangerous-mobile

DigitalOcean Toronto Lighthouse + Lighthouse clear-fish

DigitalOcean Frankfurt Teku + Teku beautiful-word

DigitalOcean London Lighthouse + Lighthouse amazing-tea

DigitalOcean Singapore Lighthouse + Lighthouse plain-news

DigitalOcean New York Lighthouse + Lighthouse tough-city

OVH Beauharnois Teku + Teku fine-adult

OVH Frankfurt Teku + Teku alert-waterfall

OVH Strasbourg Teku + Teku delightful-dates

OVH Warsaw Teku + Teku powerful-road§

Table 6: 10-node cluster

Methodology Description

Services Deployment

Each machine described above hosted six services:

Execution client Nethermind)

Beacon Node (either Lighthouse or Teku)

Charon Client

Validator Client (either Lighthouse or Teku, respectively)

Prometheus service

Node Exporter service

Loki (optional): a log aggregation system that connects to a given
Grafana.

Please find here a more in-depth description of how these services
were deployed.

Validator Creation

To keep up with the Charon cluster deployment guidelines, the
validator creation was carried out through the Charon client. Please
find the guide here.

The process consists of performing a Distributed Key Generation
(DKG) ceremony among the peers that will form each of the clusters.

https://grafana.com/oss/loki/
https://www.google.com/url?q=https://github.com/tdahar/charon-distributed-validator-cluster/tree/experiments/migalabs&sa=D&source=apps-viewer-frontend&ust=1691835883556076&usg=AOvVaw1Tqxor0miFOUODHfXg-KNJ&hl=en-GB
https://docs.obol.tech/docs/next/charon/dkg
https://docs.obol.tech/docs/next/charon/dkg

Before this ceremony, we configured each of the nodes’ ENRs and
defined one of them as the host (one in each cluster), which collected
all the ENRs into a single file. During the DKG, all peers in the cluster
connect to each other and start generating the distributed validator
partial keys shares.

After this process, at each machine, we had a Charon folder containing
the cluster definition and the validator keys shares. To activate all the
validators in an automated way we followed this guide.

Measuring & Data Collection

To analyze the performance of the nodes in the experiment, we
collected data through two different services:

Prometheus

GotEth

Prometheus

Both the execution and consensus clients expose several metrics that
can be scraped with Prometheus. The Charon client does the same.
Apart from this, we also wanted to measure the machine resource
usage, which can be achieved with the Prometheus Node Exporter
module. This module enables anyone to measure and monitor the
machine resource consumption regarding the network, memory, CPU,
and disk, among many others. With these metrics, we are able to
compare which resources are more used.

GotETH

As this experiment consists of running distributed validators and

https://parithosh.com/2021/06/09/2021-09-06-eth2-deposits/
https://prometheus.io/
https://github.com/cortze/goteth
https://www.google.com/url?q=https://github.com/prometheus/node_exporter&sa=D&source=apps-viewer-frontend&ust=1691835883556255&usg=AOvVaw2RTOV7-eS8Fjg7qJ3rxz1c&hl=en-GB

measuring their performance, it is interesting to analyze if the achieved
rewards are similar to a non-distributed validator (what we know as a
common validator until now). At MigaLabs we have developed a tool
(GotEth) capable of measuring and tracking a validator’s rewards
results obtained during a long period of time, as explained in previous
publications. More specifically, GotEth is an open-source tool that can
retrieve the achieved and max reward from any validator in the
Ethereum network at each epoch.

https://www.google.com/url?q=https://github.com/cortze/goteth&sa=D&source=apps-viewer-frontend&ust=1691835883623035&usg=AOvVaw0k0oNHKqMG4FvIwC2Mm6dz&hl=en-GB
https://arxiv.org/abs/2303.09850
https://arxiv.org/abs/2303.09850
https://github.com/cortze/goteth

Performance Analysis

In this section we analyze the data obtained during the experiment
described in the sections above. First, we start by analyzing the
hardware resource consumption of the nodes running Obol DVT. Then,
we analyze the latency between nodes running in the same cluster as
this is a critical aspect to get good reward performance. We follow the
study by looking into attestation submissions and block proposals.

Then, we compare the total rewards obtained by DVT validators vs
non-distributed validators. Finally we perform a scaling test in which
we increase the number of validators up to 3000 in one single DVT
cluster.

As the clients’ versions were upgraded during the experiment, we may
divide part of the analysis into two subsections, identified by the
Charon version (v0.14.0 for epochs before 168511 and v0.15.0 for
epochs after 168511).

Hardware Resource

During the whole experiment we measured the resource consumption
of all the nodes running DVT validators to get an idea of the workload
of DVT technology on the machines.

 Among the collected metrics, we focused on:

CPU consumption

Memory consumption

Network sent bytes ratio

By comparing these metrics from the different machines and clusters
we aim to identify any weak points or underperforming peers, due to
the different clients, machines, and locations in the experiment.

CPU Consumption

Figure 2: CPU consumption in Obol-cluster4

Figure 3: CPU consumption in Obol-cluster7

Figure 4: CPU consumption in Obol-cluster10

If we observe the CPU consumption of the three different clusters, we
can clearly spot two different groups. While some peers maintain a
40% - 60% CPU consumption, others keep themselves at 60 - 80%
CPU consumption. The latter are the peers that were hosted in the CPU
consumption. The latter are the peers that were hosted in the
DigitalOcean machines, which had less CPU capacity and, thus, had to
use more CPU resources. Other than that, there are no major outliers or
differences between different locations or CL clients.

Memory Consumption

Figure 5: Memory consumption in Obol-cluster4

Figure 6: Memory consumption in Obol-cluster7

Figure 7: Memory consumption in Obol-cluster10

Similar to the CPU consumption, we can observe that some peers at
each of the different clusters consumed more memory than others.
However, this time the difference is due to the deployed beacon client.
While peers running with the Lighthouse client consumed most of the
time between 20% - 40% of the memory, peers running with Teku
consumed most of the time between 60% - 80%.

Network Bandwidth

Figure 8: Network Sent Bytes Ratio in Obol-cluster4

Figure 9: Network Sent Bytes Ratio in Obol-cluster7

Figure 10: Network Sent Bytes Ratio in Obol-cluster10

Regarding network usage, we have extracted the ratio of megabytes
sent per second throughout the whole experiment. In the three figures
above, we can always observe two groups of peers. While some of
them spend around 4MB/s of bandwidth most of the time, some others
maintain themselves at around 2MB/s. Similarly to the CPU
consumption, we can spot that these differences are due to the cloud
provider: peers hosted on an OVH machine were capable of reaching a
higher network throughput than the ones hosted on a DigitalOcean
machine.

Overall, it is important to note that the nodes that were used for this
experiment are not powerful machines, quite the opposite, they are
considerably limited in terms of resources, and Obol DVT runs
smoothly in this constrained environment.

Latency Between Peers

As mentioned in the experiment description, it is important that the
beacon node broadcasts the signed duties in the defined time window.
Therefore, it must be ensured that the additional complexity of the
distributed validator does not add any delays.

Figure 11: Latency between locations in v0.14.0

In Figure 11 it is shown the latency between the peers by location and
region. We can observe that peers that are closer to each other
location-wise share a lower latency, as expected. After upgrading to
version v0.15.0 we can observe that the latency in the worst-case
scenarios (very far distance between peers) has improved
substantially.

Figure 12: Latency between locations in v0.15.0

In general, we see a similar pattern in both versions but with significant
improvements for v0.15.0 For example, the latency between
Strasbourg and Singapore has decreased from 470ms in v0.14.0 to
300ms in v0.15.0, which represents a 37% improvement. Similarly, the
latency between Beauharnois and Singapore has decreased from 448
in v0.14.0 to 245ms in v0.15.0, which represents a 46% improvement.

Missed Attestations

At every epoch, validators are assigned to attest to the validity of one
block. This means that they must submit one attestation per epoch.
Taking into account Figure 1, the node must broadcast the assigned
attestation duties (depending on the validators running on this node)
after receiving the new block (after the second 8th), and this duty
must have been received by the beacon committee aggregators by the
second 8th. After that, the committee aggregators broadcast the
aggregated attestation to the network, which would be included in the
next block. Delaying this last broadcast could risk the inclusion of the
aggregated attestation in the next block.

Figure 13: Missed attestation duties in v0.14.0

If the use of DVT added any delay during this process (sending signed
attestations), it could happen that the node broadcasts the signed
attestations too late, compromising the inclusion of the latter in the
aggregation. Thus, the inclusion delay would increase, and, depending
on how much it is increased, some flags could be missed,
compromising the expected reward. See here to understand better
how attestation flags are computed.

Figure 13 shows the percentage of missed attestation flags out of the
planned duties (one per validator per epoch), as well as the average
per group: distributed vs non-distributed validators.

https://pandametrics.xyz/methodology/consensus-layer/attestation-rewards

 We can observe that in all cases the most failed flag is the head flag,
followed by the source and finally the target. The difference in all cases
between distributed and non-distributed validators is less than 1%,
which demonstrates that Obol DVT has a similar performance in terms
of attestation duties.

In Figure 14, we can observe the same performance as with v0.14.0,
which means no major changes were applied regarding the attestation
duties during the upgrade.

Figure 14: Missed attestation duties in v0.15.0

Block Proposals

At every slot, one random validator is chosen to propose a new block,
which will include attestations broadcasted in the previous slots. The
block proposal is the first task inside a new slot. This means that if the
block proposal is received by the rest of the network after the
estimated (4 seconds), there is a risk the rest of the validators vote on
a missing block. It is therefore very important to ensure that DVT does
not add any delays to submitting the new block when they are chosen
as the block proposer.

Figure 15: Block Proposal Duties in v0.14.0

In Figure 15, we can observe that all validators have a proposal rate over
90%. From the Obol DVT nodes, cluster7 registers the worst proposed
blocks ratio, with 92.6% of proposed blocks. Comparing distributed
and non-distributed validators, we can observe that there is a
difference of 2% in proposed blocks. The missing blocks are
concentrated in the biggest clusters (cluster7 and cluster10), while the
validators in cluster4 did not miss any block proposal.

Figure 16: Block Proposal Duties in v0.15.0

In Figure 16, we can observe the same data as in Figure 15 but after
upgrading the Charon client to v0.15.0. Regarding the distributed
validators, we now observe a big improvement in the ratio of proposed
blocks, getting closer to the 100% and even getting better
performance than non-distributed validators. In general, we see an
improvement of 2.7% in proposed blocks in distributed validators
compared to v0.14.0. All missed blocks now concentrate on the
validators in cluster7, while cluster4 and cluster10 proposed all its
scheduled blocks.

Maximum Extractable Reward

After analyzing the attestation and block duties of validators, we want
to check what was the actual reward that validators got with respect to
the maximum they could have got. In Figures 17 and 18 (v0.14.0 and
v0.15.0 respectively) it is shown the achieved aggregated reward by
each group of validators against the maximum aggregated
compensation these could have obtained, as well as the average
grouping by distributed and non-distributed validators.

Figure 17: Achieved reward from Maximum Extractable Reward in v0.14.0

Looking at the data we can observe a similar performance for both,
distributed and non-distributed validators. We can observe that in
both versions the average extracted reward of distributed validators is
between 91% and 92%, not even 1% below the performance achieved
by the non-distributed validators. As mentioned before, the
experiment runs on the Prater network, which involves an expected
lower performance than running on the Mainnet network due to
dangling validators, among other reasons. Note that with Charon v0.15,
the difference between DVT and non-DVT is only 0.4%.

Figure 18: Achieved reward from Maximum Extractable Reward in v0.15.0

Performance Timeline

As mentioned before, the obtained rewards by a validator clearly
shows the node performance. This is why we have compared the
obtained rewards against the maximum extractable reward at each
epoch to detect any downtimes or underperformance in any of the
validators.

Figure 19: Achieved Rewards Timeline

In Figure 19, we can observe that the validator usually obtains an
average reward of 75% - 100% of the maximum extractable reward,
concentrating around the 90%, which is expected in the Prater
network. However, we see some drops even to negative values, which is
due to missing attestations or sync committee duties.

Some execution clients had issues with corrupted databases so we
had to restart some of the nodes, which caused the first drops
between epoch 166000 and epoch 168000.

During epoch 168511 we upgraded all nodes, as explained before. Since
all clusters have a threshold, we tried to maintain a minimum number
of nodes running at all times, but nonetheless, during a few epochs the
cluster underperformed. This is why we see several reward drops near
the red dashed line (which marks the epoch when we upgraded the
clients). Note that non-distributed validators running on a node would
also be perturbed by software updates, and in some cases to a greater
extent

We also see some drops around epoch 172000, in which we observed
some beacon nodes receiving blocks later than expected. More
specifically, during these slots, the Charon client sent the attestation to
the beacon node by the second 5th of the slot, at which the block had
not arrived yet. This explains why there are some small drops in
rewards on that epoch.

Figure 20: Inclusion delay by cluster

Similar to the achieved reward, the inclusion delay is a good
representation of the validator's performance. Taking into account
Figure 1, the more time a validator takes to send its signed attestation,
the higher the probability of not getting the attestation included in the
next block. As a result, less attestation rewards would be obtained.

In Figure 20, we can observe that, most of the time (over 70%) the
inclusion delay is 1 slot, which is the ideal scenario. However, we can
see that there are some cases of inclusion delays between 2 and 5 as
well (around 20% of the time), and the rest over 5 (less than 10% of
the time). We can observe that the three clusters show the same
behavior and percentiles. Therefore, even though some clusters have
temporarily underperformed, in general, all of them had an overall
similar performance.

Scaling Performance Test

Additionally, another experiment was performed on DVT. This
experiment consisted of scaling the number of validators that are run
on a cluster, with the main goal of analyzing how the Charon client
handles such a high load of duties to perform. As the main analysis
included the activation of 3000 validators in 3 different clusters
running for a total of 10,000 epochs, for the scaling experiment we
took the following steps:

Run a 4-node cluster with 1000 keys for 1000 epochs

Run a 4-node cluster with 2000 keys for 1000 epochs.

Run a 4-node cluster with 3000 keys for 1000 epochs.

The same machines were reused for all steps, but cleanup was needed
when changing the number of validators. This is because it is not

possible to add key shares to an existing cluster. Instead, it is
necessary to run the DKG process to generate all the key shares that
will be used in the cluster.

Figure 21: Beacon node score per peer and step

A larger number of validators per cluster means that a higher load is
also expected, as more duties need to be performed. For every duty,
the beacon node creates a duty to be signed by the validator client,
who sends its signature to the beacon node. The more validators, the
more duties, and therefore, more load is expected.

Figure 21, presents the beacon node score of the peers that form the
4-node cluster during the three phases of the experiment (each with a
different number of validators). The beacon node score is calculated
based on the Charon Prometheus metrics (using the number of errors
and the latency of the queries). We can observe that, the more
validators in the cluster, the lower the beacon node score.

On average, the DVT cluster obtained a beacon node score of 81.5%
with 1000 validators, 77.3% with 2000 validators (around 4% worse),

and 69.9% with 3000 validators (more than 11% worse compared to
1000 validators).

While the beacon node score gives us some indication about the
performance of the DVT cluster, there is no clearer benchmarking than
measuring the amount of rewards obtained during the three phases.

As the number of validators increased with every step of the
experiment, we analyzed the achieved rewards by the whole cluster,
normalized by the number of validators that were performing duties
during that period of time.

Figure 22: Achieved rewards per validator

Figure 22 shows the amount of ETH obtained by validators running
during the previously mentioned three phases. To our surprise, we saw
an increase in achieved per-validator normalized rewards when we
increased the number of validators. We can see that after 1000
epochs, the 4-node DVT cluster obtained:

0.009424 ETH per validator when composed of 1000 validators

0.009702 ETH per validator when composed of 2000 validators

0.010146 ETH per validator when composed of 3000 validators

Despite the decreasing beacon node score, the amount of rewards
increases as the number of validators increases. This just shows that
the internal beacon node score reported by Obol is still a work in
progress and can be improved in the future.

Software Usability

In addition to the performance, we also analyzed the ease-of-use of
Obol DVT in different uncommon scenarios.

Combine Keys Feature

After the experiment had finished it was our goal to combine all keys
so they could be reused for other testing purposes. Charon contains a
feature to combine splitted keys into a single key. We tried merging the
3k split keys, but we were not able to do so as the feature had a bug
that would not allow combining more than 10 keys.

After reporting this issue to the Obol team, the bug was solved and the
algorithm was improved so that the process would take 1 minute
(before the patch it would take 10 minutes). Finally, the changes were
merged into the main branch.

Migration of Nodes In a Cluster

After finishing the experiment, several machines were shut down and
some redistribution was needed. Specifically, the 4-node cluster kept
running, but one of the nodes was replaced, this required us to migrate
the Charon node from the old machine to the new machine. To do this,
we did not find any guidelines or walkthroughs to do this process, so
we migrated it based on our knowledge of how the Charon client works.

We copied the folder from the machine that was getting
shut down and transferred it to the new machine. The new machine
was running other validators, so we erased any volumes of data folders
from the Validator Client and imported the validators again. After that,
the new machine ran a node in the 4-node cluster.

.charon/

https://docs.obol.tech/docs/next/int/quickstart/advanced/quickstart-combine
https://github.com/ObolNetwork/charon/issues/2151
https://github.com/ObolNetwork/charon/pull/2183

As with every software, less common use cases sometimes break
something. Overall, the issues found were fixed and we managed to
perform all the experiments we wanted to do.

Conclusions

We have analyzed Obol DVT performance from a resource and rewards
perspective.

From the hardware perspective, it is clear that resource
consumption depends on the machine that hosts the node and
the deployed beacon consensus layer client. More importantly, it
is clear that Obol DVT does not need to run on powerful
hardware, it works smoothly running on limited hardware
resources

In terms of latency, we have noticed that, as expected, clusters
perform better when the nodes in a cluster are located close to
each other in nearby regions, regardless of the region. However,
even large clusters with nodes dispersed all over the world
manage to get a good performance. In particular, there was a
great improvement (over 40%) in latency obtained by v0.15.0.

From the attestation duties perspective, we found that Obol DVT
performs very well with a difference lower than 1% compared to
non-distributed validators.

Regarding block proposals, our study shows that Obol DVT
misses very few proposals, and after the upgrade to v0.15.0, the
performance of Obol DVT is even higher than non-distributed
validators, with a total score of 99.7% for Obol DVT, compared to
99.3% for non-distributed validators.

From the achieved rewards perspective, the difference between
Obol DVT and non-distributed validators is again almost
negligible (less than 1%), which was expected after seeing the
attestation duties and block proposal performance.

Inclusion delay was also analyzed and our study shows that over
70% of attestations are included in the next slot, and over 90%
of them in the first 5 slots.

During the scaling experiment we noticed that the internal
beacon node score reported by Obol technology is not a great
performance indicator and it still needs to be improved.

The combining keys feature was fixed during this study and it
now can merge thousands of keys in less than a minute, improving
the usability of Obol DVT.

Node migration is feasible with Obol DVT, but it is important to
improve the documentation, in particular regarding less common
usages. The objective is to facilitate the work of staking operators
as much as possible.

The most surprising finding of this study was probably to discover
that Obol DVT performs better as you increase the number of
validators to several thousands. Larger scaling experiments
should be performed in the future to stress as much as possible
the hardware resources and measure the limit of this scaling.

	Frame - 1
	Frame - 2
	Frame - 3
	Frame - 4
	Frame - 5
	Frame - 6
	Frame - 7
	Frame - 8
	Frame - 9
	Frame - 10
	Frame - 11
	Frame - 12
	Frame - 13
	Frame - 14
	Frame - 15
	Frame - 16
	Frame - 17
	Frame - 18
	Frame - 19
	Frame - 20
	Frame - 21
	Frame - 22
	Frame - 23
	Frame - 24
	Frame - 25
	Frame - 26
	Frame - 27
	Frame - 28
	Frame - 29
	Frame - 30
	Frame - 31
	Frame - 32
	Frame - 33
	Frame - 34
	Frame - 35
	Frame - 36
	Frame - 37
	Frame - 38
	Frame - 39
	Frame - 40

